翻訳と辞書
Words near each other
・ Komorniki, Gmina Gorzkowice
・ Komorniki, Gmina Kleszczewo
・ Komorniki, Gmina Wolbórz
・ Komorniki, Legnica County
・ Komorniki, Lesser Poland Voivodeship
・ Komorniki, Masovian Voivodeship
・ Komorniki, Opole Voivodeship
・ Komorniki, Podlaskie Voivodeship
・ Komorniki, Polkowice County
・ Komorniki, Strzelce County
・ Komorniki, Warmian-Masurian Voivodeship
・ Komorniki, West Pomeranian Voivodeship
・ Komorniki, Wieluń County
・ Komorniki, Środa Śląska County
・ Komorniki, Świętokrzyskie Voivodeship
Komornik–Loreti constant
・ Komorno
・ Komorní Lhotka
・ Komoro
・ Komoro Castle
・ Komoro Domain
・ Komoro Station
・ Komoro, Nagano
・ Komorovice
・ Komorowice
・ Komorowice, Bielsko-Biała
・ Komorowice, Greater Poland Voivodeship
・ Komorowice, Strzelin County
・ Komorowice, Wrocław County
・ Komorowo


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Komornik–Loreti constant : ウィキペディア英語版
Komornik–Loreti constant
The Komornik–Loreti constant is a mathematical constant that represents the smallest number for which there still exists a unique ''q''-development.
==Definition==
Given a real number ''q'' > 1, the series
: x = \sum_^\infty a_n q^
is called the ''q''-expansion, or \beta-expansion, of the positive real number ''x'' if, for all n \ge 0, 0 \le a_n \le \lfloor q \rfloor, where \lfloor q \rfloor is the floor function and a_n need not be an integer. Any real number x such that 0 \le x \le q \lfloor q \rfloor /(q-1) has such an expansion, as can be found using the greedy algorithm.
The special case of x = 1, a_0 = 0, and a_n = 0 or 1 is sometimes called a q-development. a_n = 1 gives the only 2-development. However, for almost all 1 < q < 2, there are an infinite number of different q-developments. Even more surprisingly though, there exist exceptional q \in (1,2) for which there exists only a single q-development. Furthermore, there is a smallest number 1 < q < 2 known as the Komornik–Loreti constant for which there exists a unique q-development.〔Weissman, Eric W. "q-expansion" From (Wolfram MathWorld ). Retrieved on 2009-10-18.〕
The Komornik–Loreti constant is the value q such that
: 1 = \sum_^\infty \frac
where t_k is the Thue–Morse sequence, i.e., t_k is the parity of the number of 1's in the binary representation of k. It has approximate value
: q=1.787231650\ldots. \,
The constant q is also the unique positive real root of
: \prod_^\infty \left ( 1 - \frac \right )^ - 2.
This constant is transcendental.〔Weissman, Eric W. "Komornik–Loreti Constant." From (Wolfram MathWorld ). Retrieved on 2010-12-27.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Komornik–Loreti constant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.